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1. Introduction. The definition of the correlation function and the spectrum of a 
stationary random function is now classical, but in many applications one feels the 
need to extend this definition to random functions, which, although non-stationary, 
are in some sense nearly stationary. We suggest, therefore, for the definition of the 
correlation of a random function whose covariance P(t, s) is known, the limit 

(1.1) R(h) = lim - f ( - + h d + 

if this limit exists for every h. The spectrum S(X) can then be obtained from R(h) 
in the classical way. 

We are led to the above definition of the correlation function R(h) by the follow- 
ing considerations: we determine the sample-correlation from a truncated sample of 
the random function; we then obtain a sub-correlation, RT(h), of the random func- 
tion (defined as the correlation of the truncated random function) by averaging 
the sample correlations; finally, the correlation R(h) is defined by (1.1) as the 
limit of RT(h), if this limit exists. 

The function R(h), so defined, has all the properties of a correlation function. 
If the random function is stationary (wide sense) [4, p. 95-96], our definition coin- 
cides with the classical definition. The estimation of the correlation of a stationary 
random function has been considered extensively in the literature, particularly by 
U. Grenander and M. Rosenblatt [6], R. B. Blackman and J. W. Tukey [1], and E. 
Parzen [13, 14]. In order to evaluate how good the estimate R(h) is from the sample- 
correlations pT(h, w), which are the only experimental observables, we compute the 
variance of the random variables pT(h, w) about RT(h), and then we compute (for a 
fixed h) an upper bound of R(h) - RT(h) for large T. 

This paper is especially concerned with the case in which the random function 
has a periodic covariance P (t + r, s + r) = r(t, s). To appreciate the scope of 
the above condition, let us note that it is always satisfied when the random function 
is a sum of two uncorrelated random functions, one being a stationary (wide sense) 
random function and the other a periodic random function. 

The last part of the paper is devoted to the estimate of R(h) for a non-stationary 
random step-function V(t, co), similar to the one introduced by N. Wiener, 

(1.2) V(t, w) = Xn(w), n-1 < t < n, n = 1, 2 

where [X1 (co), X.. X?(co), ] is a sequence of independent random variables 
taking only the values -1 and + 1 with equal probability. 

An experimental function will be constructed using a table of random numbers, 
and sample-correlations will be determined. Estimates for the sub-correlations are 
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then determined by taking averages over the experimental correlations. The accu- 
racy of these estimates is characterized by giving the variance for the departure of 
the sample-correlations from the estimated sub-correlations. The experimental data 
are then compared with the theoretical results. (Cf. [5], [9].) 

2. Random Functions, Covariances and Correlation Functions. We consider here 
a random function of a real variable t as an ensemble of real functions f(t, a), where 
w is a parameter chosen at random in some set Q according to a probability measure 
A [7]. A sample of the random function f(t, co) is simply the real function f(t, wo) 
corresponding to a particular choice of ao in the set Q. It is convenient for many 
applications to take for Q a function space; each point X is then a function w(t) 
belonging to some prescribed class of functions (e.g., a continuous function on 
[0, 1] ). One has thus for each sample f(t, w) = wo(t). When this particular choice is 
made for Q, one says that the random function is of "function space type" [4, p. 67]. 

The following general hypotheses shall be made with regard to the random 
functions considered in the present paper: 

H1 . f(t, co) is measurable with respect to the product measure m X Au (where m 
is the Lebesgue measure on the real line - oo < t < + oo ). 

H2 . For each t, f(t, co) C L2(Q): f (t, CO)2 < + oo. (If F(co) E L(Q) we denote its 

mean value by F(w)dg = F(co).) 

H3 . H2 implies f(t, c.) E L(Q); we suppose f(t, a) = 0. 
H4 . It follows from H2 that the covariance 

(2.1) r(t, s) = f(t, co)f(s, co) 

exists for all t's and s's. We assume that, 

(2.2) r(t, t) E L[a, b] 

for every finite interval a ? t < b. From (2.2), by the Fubini-Tonelli theorem, 
[8, Vol. 1, p. 609] it follows that 

(2.3) f(t, c) E L2[a, b] 

for almost all samples, in any finite interval a ? t < b. This implies also that 

(2.4) f(t, co) E L[a, b] for almost all samples. 

In our earlier paper [9] instead of (2.2), we assumed that 

(2.2') F(t, s) E L(A2) 

for every finite rectangle A2 in the plane (t, s). We are indebted to the referee for a 
simple counter example showing that (2.2') does not always imply (2.3) and for 
the suggestion that we replace (2.2') by (2.2); the proof that (2.2) implies (2.3) by 
the Fubini-Tonelli theorem is straightforward. 

If the random function f(t, co) is stationary 

(2.5) r(t, s) = p(t - s) 

where p(h) is called a correlation function. Due to H1 , p(h) is uniformly continuous 
in any finite interval [3]. A real function p(h) is a correlation function if, and only 
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if it is symmetric and positive-definite 

(2.6) p(-h) = p(h) 

(2.7) EjEZXiXkp(hj - hk) ? 0 
jIk 

for any set [hi, ... h.] with n arbitrary. 

3. Truncated Samples of Random Functions. In experiments concerning a ran- 
dom functionf(t, w) one can materialize, as a rule, the sample of the function only for 
a finite interval, that is, one knows only truncated samples. As far as finite intervals 
are considered, one often uses the notation [- T, + T] for the interval in which the 
samples are known in the experiment. Rather than this two-sided (symmetric with 
respect to t = 0) truncation, we shall prefer here a one-sided truncation (starting at 
t = 0) and we will define a truncated sample by 

Mf(t, Wo) = f(t, wo), 0 ? t < T. 

fT(t, Wo) = 0, t < 0 or t > T. 

This definition implies that the experiment starts at t = 0; we assume that it could 
be extended for an arbitrary time T in the future, but not in the past (time prior 
to the beginning of the experiment). From the samples we will draw some inference 
with regard to the random function for 0 ? t < + oo, but completely ignore it for 
t < 0. 

4. Correlation and Spectrum of a Truncated Sample. For a truncated sample, 
corresponding to a given coo, we define a sample correlation as 

(4.1) PT(hy Coo) = X tf f W-- oo) f ?t + coo)did for h l< T 

and 

(4.2) PT(h, wo) = 0, for / h } ? T. 

Let us remark that both (4.1) and (4.2) can be replaced by the formula 

PT(h Coo) - fT ( ) Coo fT (t+ co)d 
(4.3) +0 

=- L fr(,T CO)fT(t +I h |, Co) dt, for all h. 

From H2 it follows that the correlation pT(h, w) exists for almost all samples 
(i.e., with probability one). The great advantage of our definition is that the 
correlation pT(h, co) is a positive-definite function of h, uniformly continuous in h (for 
each co for which it exists) . 

If we had used as correlation of the truncated sample, as is very often done, the 
function 

(4.4) PT(h,,) - P(h, CO) 

T 
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then we would have completely missed these important properties of pi (h, co). 
Indeed, PT(h, c) would have been, in general, discontinuous at I h = T and no 
longer a positive-definite function. Thus pT(h, co) would not have been the Fourier 
transform of a function VIT(X, c)- 

The only advantage gained by using AT(h, co) is that if f is constant, PT is also a 
constant while PT is not. This fact was probably the reason which led the statisti- 
cians to use this definition for the correlation of a truncated function. However, the 
nonexistence of a spectrum 4/T(X, CW) which may have to be reintroduced later by 
various artifices, may lead to serious complications in the estimation of the correla- 
tion functions, particularly when numerical methods are used for that purpose. 

The spectrum IT(X, W) is very simply connected to the complex Fourier trans- 
form of the sample 

(4.5) aT(X, co) 
T 

1 etf(t, co) dt = T J ecifT(t, co) dA 

Due to (2.3), the Fourier transform exists for almost all samples and, by Plancherel's 
theorem, [8, Vol. 2, p. 742], a T(X, co) E L2[- oo, + oI (but not, in gen- 
eral, to L- oo, + oo]). From (4.5) we have: 

(4.6) 1 aT(X, C) 12 = 
T 2 

ff e6i(8t)fT(t, c) fM(s, cc) dt ds. 

Let us consider the (t, s) plane and make the change of variables 

h h 

(4.7) 

t h=s-t. 

For any F(t, s) E L(R2) 

F(t, s) dt ds f F - t + h dhd 
(4.8) +i-c 

Fri-o h h\ 
(4.8 f-x U|OA F - ' _ + 2) dij dh 

the last formula being a consequence of Fubini's theorem [8, Vol. 1, p. 631]. 
Using this transformation, we can write (4.6) in the new form 

(4.10) 1 aT(X, c) 12 = L f e1hpT(h, CO) dh. 

Using the fact that PT( -h, c) -PT(h, co) we have 

(4.11) 1 aT(X,)12 PT(hc) cos Xhdh. 

Thus we obtain immediately 

2 rT T 
(4.12) q1T(X, c) - - pT(h, c) cos Xhdb = - aT(X, C) 

or. .0 11r 
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which gives the expression of the spectrum in terms of the Fourier transform of the 
truncated sample. 

Let us note the following properties of this function 

(4.13) PT(Xj W) >_ 01 

(4.14) T( -X, C) = VPT(X, C), 

(4.15 ) IT(AXj co) i L(0j + Xo ) . 

Due to this last property we can invert the Fourier transform (4.12) and we obtain 
the reciprocal formula 

p+x 

(4.16) PT(hco) = JbT(XN ) COs Xh dX. 

5. Sub-Correlation and Sub-Spectrum of a Random Function. Let us now define 
the sub-correlation RT(h) of the random function fT(t, co) as the average of the 
sample-correlations pT(h, co), i.e., 

(5.1) RT(h) = pT(h, co). 

Obviously, we have 

(5.2) RT(h) = 0, IhI > T. 

and for all other values of h 

(5.3) RT(h) T[1T h/f(- h)f( +2)di]d h | T. 

Inverting the double integral in accordance with Fubini's theorem we find 

(5.4) RT~~h) = 1 I 
T-1h112 h r, A)- Rhrhl ( 0? h)! h _ T. 

Thi /2h2/2 

Let us refer to the change of variables (4.7) and let us consider the (t, s) plane 
(Figure 1). We introduce the following notation 

(5.5) AT{(t, s):0 ? < t O T, _ s < T}. 

Then obviously 

(5.6) RT(h) = X Integral of r(t, s) along the segment AB of 6(h) contained 

in AT. 

If we define 
rT(t, s) = r(t, s), (t, s) C AT 

rT(t, s) = 0, (t, s) ( AT 

we can also write (5.4) in the following way 

(5.8) RT(h) = rT - I t + 
h 

dt, 

which is true for all values of h, giving RT(h) = 0 for h < T or h > T. Obviously, 
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s + a6(h),h>O 
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FIG. 1.-Change of variables. 

one has also 

RT(h) = L rT(t, t +I h 1) dt 
(5.9) f 

= r~t r(t, t + Ih 
1 dA. 

Thus, to compute RT(h) for all h it is sufficient to know the covariance r(t, s) in the 

square AT. 

Let us define the sub-spectrum of the random function f(t, ,) as the average over 
the spectra of the truncated random function 

(5.10) (PT(X) = 4/T(X, CO). 

Then we have the two reciprocal formulas 

+00 

(5.11) RT(h) = f sT(X) cos Xh dX 

(5.12) TW(X) = IRT(h) cos Xh dh. 
V 

From (4.13) it follows that (PT(X) > 0; thus, by S. Bochner's theorem [2] RT(h) is a 

continuous correlation function. 

6. Correlation Function of a Random Function. We define the correlation function 

R(h) of the random function f(t, cw) by 

IT~~h) r T-1h112 
h 

(6.1) R(h) = lim Rr(h) = lim -| r 1 _- h + d~, 
T->+oo TT-*+o T hl /2 2 2 

if this limit exists for every real h. 

If the random function is stationary (wide sense), then by definition 

(6.2) r (t, s) = p(s-t), r ( _ h + p(h), 
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and 

(6.3) JTR(h) = (1 
I h p(h), I h{ T 

RT(h) -O= h _T. 

Thus the limit of RT(h) exists and 

(6.4) R(h) = lim (1 - h1) p(h) = p(h). T 
Hence, for a stationary random function our definition gives the classical result, 
but we can also apply (6.1) to non-stationary random functions. 

Let us consider as an example the random function 

f(tw) - W(t) 
VT 

where W(t) is the classical Wiener-Levy function, giving the abscissa at time t of a 
particle, starting from the origin at time t = 0, and subjected to one-dimensional 
Brownian motion. This function is certainly not stationary; it has the covariance 

r(t, S) t , <t S. 

r(t,s) = 
S O<s<t. 

According to our definition this nonstationary random function has the correlation 

R(h) = linn f i / -+01 j dt = 1, for all h. 

7. Spectrum of a Non-Stationary Random Function. As far as the spectrum is 
concerned, (PT(X) does not, in general, tend toward a limit when T -* + m, even if 
the correlation R(h) exists, but exactly as in the stationary case [10, Vol. 2, p. 
164-166] it can be shown, using Paul Levy's continuity theorem (12, p. 195], that 
the integrated spectrum 

(7.1) ST(X) = f (PT(1) do 

does in fact tend toward a limit 

(7.2) S(X) = limST(X) 
T->+oo 

if the correlation R(h) defined by (6.1) exists and is continuous. (This is not 
necessarily true; R(h) being the limit of a sequence of continuous functions can be 
discontinuous.) Thus, 

(7.3) R(h) = f cos Xh dS( ), 

this being a Fourier-Stieltjes integral and the spectrum S(X) being a monotonic 
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non-decreasing function such that S(O) = 0, S(?+ o ) < + oo. In general, S(X) is 
discontinuous and the spectrum has a countable number of lines corresponding to 
a finite amount of energy. 

The spectrum S(X) can be computed from the correlation R(h) by applying 
the Paul Levy inversion formula [12, p. 166] 

(7.4) S(X2) - S(x1) = H fsinX2h - sin Xi hR (h) AY 
A--i-+o do h 

which is valid if X1 and X2 are continuity points of S(X). When R(h) is known the 
spectrum is thus defined for every X > 0 with the exception of, at most, a countable 
number of discontinuity points. 

8. Estimation of Correlations for aNon-Stationary Function. For a non-stationary 
random function, even if we have not only truncated samples of the function, but 
also its covariance in AT, this does not give us sufficient information to determine 
R(h). It is obvious, from (6.1), that large values of t are most important in deter- 
mining R(h) (even at small values of h). The knowledge of r(t, s) in the square 
AT only does not give us any information about its values for large { on 5(h) (See 
Fig. 1). 

We shall consider here one class of random functions which is not stationary, 
but on which information is given, which enables us to make an estimate of R(h). 

This class is defined by the condition that P - + 2) is periodic in $. This 

condition means that the covariance is invariant under a translation r parallel to 
the first bissectrix (Fig. 1) 

(8.1) r(t + r, s + r) = r(t, s). 

The scope of the implications of this hypothesis for applications is better under- 
stood if one points out that (8.1) is satisfied when the phenomenon represented by 
the function f(t, w) is the result of the superposition of two phenomena, one sta- 
tionary and the other periodic. Thus 

(8.2) f(t, W) = fl(t, W) + f2(t, CO) 

where fA(t, co) is a stationary (wide sense) random function: 

(8.3) fM(t, W)f(s, W) = pi(t - s) 

and f2(t, co) is periodic 

(8.4) f2(t + ar, W) =f2(t, W) 

(8.5) f2(8, W)f2(t, w) = r2(t, s) 

r2(t + r, s) = r2(t, s + r) = r2(t, s), 

the two random functions fi and f2 being uncorrelated 

(8.6) fl(t, W)f2(s, co) C 0. 
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Thus one has 

(8.7) r(t, s) = pj(t - s) + r2(t, S) 

and J'(t, s) satisfies (8.1). 
In this case the limit (6.1) obviously exists and the correlation is given by 

(8.8) R (h) =-- r(t, +I| h 1) dS. o 

The sub-correlation for T = Nr(where N is an integer), due to (5.9), is equal to 

I hV7--hl 

(8.9) Rxt(h) = 4- f r(#, + ? I h 1) d{. 

As a consequence of the periodicity 

1 Ihl 
R(h) - RNr(h) = + I h 1) d?. 

We thus have the upper bound 

(8.10) R(h) - Rs,(h) |(t7 + I h id 

for the error obtained by using the sub-correlation RNT(h) instead of the correlation 
R(h). The upper bound (8.10) is a function of h; however, at a given h, this bound 
tends to 0 as 1/N. 

Let us consider the case when (k - 1)r ? I h I< kr (k integer). Using the pe- 
riodicity of r and Schwarz inequality we have 

(8.11) IR(h) -RNT(h) I < - 1 r d4. 

When the covariance r(t, s) is known for one period over the diagonal t = s we can 
compute 

(8.12) A = 2 fr(t, ) d{. 

Finally, the upper bound for the approximation is given by 

(8.13) R(h) -INr(h) I < AN' (k-1)r _ h _ kr. 

Let us now consider RT(h) when Nr < T < (N + 1)T. We have 

Nr 1 
Tr_1hir ? i RT(h) T RN,(h) - Jh + I h 1) dI 

-T1r(t, t + l h J) dS. 

Thus, due to the periodicity of r, 

(8.14) RT(h)- - RN(h) ? A -< T T N 
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From (8.13) and (8.14) we obtain finally 

Nr 1?+k 
(8.15) ~RT(h) 

- 
NT R (h) _ A +Z, NT < T < (N + 1)T, (8.15) T N 

(k - 1)r < h < kr. 

This relation shows that the approximation is good if k/N is small. 

9. Accuracy of Estimates of Correlations. In estimating the correlation R(h) of 
a random function from truncated samples there are two steps: 

(a) From the correlations PT(h, wc) of the truncated samples we estimate the 
sub-correlation RT(h), 

(b) From RT(h) we compute R(h). 
In the preceding section for the case of a random function with a periodic covari- 

ance we have solved problem (b) at large values of T. Now, let us look at the prob- 
lem (a), namely, how to evaluate the approximation with which one determines 
RT(h) from the average of the correlations pT(h, wc) of a number q of samples 

j=q 

(9.1 ) RTq(h) = E PT(h, wj). 
q j= 

It appears that the best way to make such an evaluation is to determine the vari- 
ance of the random variables PT(h, wj) about their mean value RT(h); if this vari- 
ance is small enough we can expect that for a reasonably large number q of samples 
the estimate RT(h) will be fairly good. 

In order to compute this variance, in addition to Hypotheses H1 to H4 of Section 
2, we shall assume that 

H5 . f(t9 w) E L4(Q) for all t's. 
This insures the existence of the fourth-order moment 

(9.2) on (t, t2 t3 t4) = f(tw)f(t2 W)(t3 W)(t4 w) dM 

for all [t1 , t2 , t3 , t4. 
We shall, moreover, assume that 
H6. OlZ( t1, t2 , t3X t4) E L(t) for every finite parallelepiped of the four-dimen- 

sional space (t1 , t2 , t3 , t4). 

Let us observe that the fourth-order moment exists in the important case of 
normal random functions, i.e., when the n random variables, f(t1, w), ... f(t, , a) 

[t1, ... , t] arbitrary follow an n-variate normal (Gaussian) law. 
From (4.3) and (5.8) we find that the departure of a correlation for a particular 
truncated sample from the mean value taken over the correlations for all samples is 
given by 

PT(hW ) -RT(h) = L 
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After taking a square and averaging, we obtain 

(9.3) oAT(h)2 = [PT(hw) - RT(h)]2 = T ff FA(4, 77, h) di d7 

with 

FT(t7 X7, h) M T ht2 + 2 ' X 2' +2 

( -~~~~~~~~~rT (t2't+ -2 rT (I 2 "7+2 

In the above equation rT(t, s) is defined by (5.7) and MT by the two relations 

) RT(tl, t2, t3, I4) - ((tl, t2, t3, t4) 

when (t1, t2) E AT and(t3 ,t4) E AT 

and 

(9.6) ORT(tl t2X t3, 4) = 0 when (tl, t2) f AT or (h, I4) f AT. 

Equation (9.4) shows that whenever the covariance P and the fourth-order moment 
M are known, we can evaluate the variance, o-T(h)2, of the random variables 
pT(h, w) about their mean value RT(h). In particular, for h = 0, we have 

(9.7) oT(0)2 =L fT [z(7, 1, 77, 7) - r(, ~)r(-, a)] dS dq. 

10. Random Step- Function with Periodic Covariance. As an example let us take 
the random function defined as follows* 

(10.1) V(t7 o) =Xn(w) n-1 _ t < n,n = 1, 2,.* 

where 

(10.2) Xl(),, Xn() 

is a sequence of independent random variables, taking only the values -1 and + 1 
with equal probability 

(10.3) Prob [X = -1] = Prob [X = +1 = 2. 

The random function V(t, w) is essentially the same as a function considered by 
Norbert Wiener in his pioneering work on correlation and spectrum, [15, p. 151] 
except for the fact that his function is defined for - oc < t < + oo and ours only 
in [0, +Xo]. 

From (10.3) it follows that 

(10.4) = 0 

(10.5) XmXn = nm X 

* As measure space Q, one can take the interval [0, 1], 0 < X < 1, with Xn(w) = 2an - 1, 
where an is the nth coefficient in the binary development w = ai/2 + . 4+ an/2n + * . . The 
measure on [0, 1] is the Lebesguemeasure i{w: an = 1} = A1 b: an = 01 =1. 
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where 3m6n is the Kronecker symbol. If one defines 

Am n = {(t, s):m - 1 < t < m, n - 1 < s < n} 

then 
n=+Oo 

r(t, s) = 1, (t, s) G U An n 
n=l 

n-I+oo 

r(t, s) = 0, (t 's) U nn. 
n=1 

Obviously, the random function V(t, w) is not stationary, but its covariance, when 

put in the form r -, ' + is periodic, with period 1 in t (see Fig. 2). Thus 

the results of Section 8 apply, and the non-stationary random function V(t, W) has, 
according to (8.8), a correlation 

(10.6) R(h) =( IhI 
< 1, 

R(h) = o, h > 1. 

Let us first consider the case T = N, where N is an integer. We find that 

pN(h, w) = (k- | h |)YN(k - 1, w) + (1 - k + I h i)YN(k, w), 

(10.7) k-1 < 1 h : < ky 1 < k _ N- 1, 

PN(hj w) = . h I _ N. 

where YN(0, w), YN(1, W) ... YN(N - 1, w) represent the random variables 

1 j=N-k 

(10.8) YN(kZ, W) = - 1 Xj(W)Xj+k(W), k = 0,1, (N- 1) 

S 

S //j5 

0 1 2 3 t 
FIG. 2.-The (t, s) diagram for a random step-function. r(a _ h + 4) is periodic in 4 

and for a translation parallel to t = s, r(t + 1, s + 1) = r(t, 8). 
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in particular 

(10.9) YN(O,co) 1. 

For each sample co, the sample-correlation pN(h, w) is represented by a polygonal 
line (Fig. 3). The ordinates YN(1, w), YN(2, co) ... YN(N - 1, w) corresponding 
to h = 1, 2, *-- (N - 1), are the random variables defined by (10.8). We see 
immediately that YN(k, co) can only take the values 

N-k N N-k-2 N-k-2 N-k 
N ' N ' N + N 

following the binomial law. As a consequence 

(10.10) IpN(k, )) _ k-N k = 1, 2, .. ,(N -1). 

We obtain for the mean, variances, and covariances of the ordinates YN(k, co) 
respectively, 

(10.11) YN(k, c) = 0 k =1, 2, ... ,(N-1) 

(10.12) YN(k Cc)2 = N2 

\ R th) = RN ( h) 

YN (IOI~z))%KPN(h t@) N'~~~~ 

\ I / 2 \ 3 ~~~~~N-1 N h 

FIG. 3.-The polygonal line pN(h, w) represents a sample-correlation of the step-function. 
RN(h) = pN(h, co) is the sub-correlation, which for the step-function, is equal to the correla- 
tion function R(h). 
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and 

(10.13) YN(k, w)YN(l, w) = 0, $ 1. 

From (10.7), (10.9) and (10.11) we deduce 

(10.14) pN(h,) = 1- hi, jh ? 1 

PN(h, CL) = 0, h I ? 1. 
Thus 

(10.15) RN(h) = pN(h, w) = R(h). 

Let us next suppose N < T < N + 1. We find 

N k - N+hT-k-h 
PT(hC ) p=-N PN(h, W) + NT + Xk XN+1 + T Xk+l XN, 

N-k < h < T-k, k =1, 2, ... N. 

( 10.17) P NT(h) W) =-T PN(h, W) + T Xk XN+1, 

T-k < h < N + 1-k, k =1, 2,* ** N. 

ThusifN < T <N+ 1, 

(10.18) 1pT(h, w) - PN(h, w)| I 1 - N I PN(h', w) + -1 N 

As a consequence of (10.10), we have 

(10.19) IpT(h, w) -PN(h,w)lN ? 1 for N?T<N+1. 

For large values of N the right-hand side of this inequality is as small as we want. 
Thus we can always, in studying pT(h, C), suppose that T has an integer value N. 

Let us now compute the variance ON(h)2 of the sample-correlations about their 
mean value. We will make the computation only for T = N. Due to (10.14) one has 

OTN(h) = pN(h, W)2. 

From (10.7), (10.12) and (10.13) we obtain 

pN(h, C)2 = (k - h 1)2N -k + 

(10.20) 

+ (1-k + I h 1)2 A2 k k-1 Ih kk = 1,2, ... N-1. 

In particular for h = k 

(10.21) OfN(k)2= pN(k ,C)2 (N-k) 

The proposition that the random variables pN(h, w) tend toward their limit R(h) 
for almost all samples, 

Prob [ lim pN(h, w) = R(h)] = 1, 
N--+oo 
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will now be established. First from (10.8) we compute 

(10.21) YN(k )4 (N - k)(2N - 2k + 1) 
N 4 

Let us now observe that for a fixed N, when k takes the values 1, 2, * (AN - 1) 

one has YN(k, )4 .Thus, k now being fixed, we have 

N=+oo 
4__ <_ 3 N=+?oo 

L YN(k,o) < 3 E N2 

and, therefore 

Prob [Z YN(kjw)4 < + oo 1 
LN=1 

Here, we use the following criterion for the almost sure absolute convergence for a 
series of random variables. If +?? I X, I < + 00, then Prob [Z I < + ?? 
= 1. This criterion applies even when the random variables Xi1 . , X2, . are 
not independent. However, the convergence of the series implies that YN(k, w) -?0. 
We have thus proved that 

Prob [ lim YN(k, co) = 01 = I 
N-*+oo 

for each fixed k _ 1 
Let us now take a fixed interval I h ? _ M, where M is an integer. In this interval, 

there are exactly M points, h = I1, h = 2, ... h = M, which completely determine 
the polygonal line. Each of the M ordinates YN(1, lco), YN(2, &) - . YN(M, co) 
tends toward 0 with probability one. Their number being finite, this evidently 
implies 

Prob i lim YN(k, co) = 0 for k = 1, 2, - MI = 1. 
N-H-oo 

We have thus proved that 

(10.22) Prob [lim PN(h, co) = R(h)] = l 
N-H+oo 

in the finite interval I h I ? M and the proof is complete because M could be taken 
arbitrarily large. 

11. Correlation Estimates for a Continuous Step-Function Constructed Using 
Sequences of Random Numbers. A continuous step-function has been constructed 
using a table of random numbers which are listed in 100 groups of 1000 digits each 
[11]. For our analysis we selected the 200 first digits of each of the 100 groups and 
divided them into five consecutive segments of 40 digits. All the even digits were 
then replaced by + 1 and the odd digits by -1. We thus obtain one set of 500 
sequences of 40 digits (+ 1, or - 1). Other sets were constituted by combining two 
or more consecutive segments of 40 digits. As a result we have obtained the follow- 
ing five sets of experimental functions without overlapping sequences within each 
set: 500 sequences of 40 digits; 200 sequences of 80 digits; 100 sequences of 120, 
160 and 200 digits, respectively. 
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Let us consider a set of q sequences with N digits in each sequence. A sample- 
correlation for the sequence is determined for T = N by (10.8). The average taken 
over the q sample-correlations of the set determines the estimate for the sub- 
correlation, cf. equation (9.1). 

I q 

(11.1) RN,q(k) = - E PN(k, wi). 
q = 

In a sequence of N digits there are N - k products Xj(co)Xj+k(w) equal to 
either +1 or -1. If nN(k, w) is the number of products equal to +1 then 

(11.2) PN(k, w) = [N-k - 2nN(k, W)] 

and 

N -k 2 q 
(11.3) RN, q(k) - k N 2 E N(k 

As it has been shown in Section 10 a sample-correlation pN(h, co) is represented 
by a polygonal line. The vertices of this polygonal line correspond to h = k = 
0, 1, 2, ... , (N - 1) and are given by (11.2). Similarly, the estimate RINq(k), 
for the sub-correlation is represented by a polygonal line which is determined by 
(11.3). It is, therefore, sufficient to determine the values of pN(k, cW) and R&Nq(k) 
at the vertices of the polygonal lines to have the corresponding sample-correlations 
pN(h, w) and the estimate for the sub-correlation RNq(h) for the continuous step- 
function. Figure 4 illustrates several examples of sample-correlation pN(h, W) for 
individual sequences of digits. Numerical data for RNq(k), for the five sets of 
sequences, are listed in Table I and a few of them are illustrated on Figure 4. The 

I N=40 

0.2- R (k) q -500 INq 

0.I 

R)p I 

-0.1 

\ / 

-0.2 I 
0 1 2 3 4 k 

FIG. 4.-Experimental examples of sample-correlations pN(k, w) obtained for a random 
sequence of digits -1, +1, are represented using light interrupted lines. The heavy polygonal 
line represents the estimate of the sub-correlation RN,q(k) obtained by averaging over q = 500 
sample-correlations. 
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theoretical sub-correlation RN(h) is in the present case equal to the correlation 
R(h) (see (10.15)) and, therefore, the experimental results for RN,,(k) should be 
compared to the theoretical value 

(11.4) RN(k) = R(k) = 0, k ? 1. 

The departure of the value for a sample-correlation from the estimated sub- 
correlation, as determined from q samples, is given by 

pN(k, C) - RN,q(k). 

The variance aNr(k)2 for such departures is given by the relation 

a7NQ(k) = [pN(k, C) - kN,q(k)]2 

(11.5)qI 

( nN(k, (A) + - i N(k, c,) . 
N2q 1 LI J 

Numerical results for the experimental variance o-Nq(k)2 are listed in Table II and 
compared with the theoretical values, aN(k)2, computed by using the relation 
(10.21). 

TABLE I 

Estimates for the Sub-Correlations of Sequences of Random Numbers 

N ............... 40 80 120 1 160 200 
q.500 200 100 100 100 q 

......._...... 

RNfn q (1) -0.0041 -0.0026 -0.0047 -0.0023 -0 . 0053 
RNq(2) +0.0053 +0.0040 +0.0143 +0.0033 +0.0054 

fRN,(3) +0.0066 +0.0071 +0.0087 +0.0081 +0.0073 
RN,q(4) +0.0083 +0.0036 +0.0095 +0.0061 +0.0072 

TABLE .I 

Comparison between Experimental Variances ouN,,(k) and Theoretical 
Variances o-.N,(k)_____ 

N.......*.... 40 80 120 1 160 200 
q. ........... 500 200 1100 100 100 

(1)2 0.0253 0.0125 0.0094 0.0074 0.0066 
a7N(1)2 0.0244 0.0123 0.0083 0.0062 0.0050 

'N q (2) 20.0231 0.0125 0.0076 0.0061 0.0048 
oN(2)1 0.0238 0.0122 010082 0.0062 0.0050 

cTv ,q(3) 2 I 0.0232 0.0121 0.0074 I 0.0059 0.0043 
O'N (3)1 0.0231 10.0120 0.0081 0.0061 0.0049 

O'N' (4)20.0198 0.0089 0.0065 0.0038 0.0035 
o~N(4)2 0.0225 10.0119 0.0081 0.0061 0.0049 
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15. Frequency Distributions of Sample Correlations. Let us denote as 

q5fq[nN(k, w) = u] 

the number of sequences of a set for which nN(k, w) is equal to u. We find then, for 
the frequency distribution of sample-correlations 

(12.1) aq[PN(k, c) = U] - FnN(k, co) = u], 

where 

U = (N - k - 2u). N 

Numerical values for the frequency distribution of sample-correlations can easily 
be obtained from Table III where qSq[nN(k, a) = u] is listed for the five sets of 
sequences. It may be noted here that (11.3) can also be written as 

N-k 2N-k 
(12.2) RNq(k) = N KZ u5 q[nN(k, w) ]41, 

which is often more convenient for numerical computations. 

TABLE III 
Frequency Distributions of Sample-Correlations 5q(PN U) = 5q(nN = U) 

500 5Y5Oo (n40 = u) 200 52oo (nso = u) 100 Sioo (n12o = u) 
n4o no - nm 

k=1k=2 k=3 k=4 k=lk=2 k=3 k=4 k=lk=2k=3 k=4 

9 0 0 0 1 24 0 0 1 0 45 0 1 0 0 
10 0 0 0 1 25 0 0 0 1 46 1 0 2 2 
11 4 3 2 3 26 0 0 0 0 47 0 1 2 0 
12 3 3 2 12 27 0 1 1 0 48 1 2 1 1 
13 8 16 10 19 28 0 1 2 0 49 2 2 1 0 
14 14 13 18 23 29 2 1 1 0 50 2 0 3 1 
15 23 33 27 49 30 0 3 3 1 51 1 3 0 2 
16 30 45 26 44 31 4 3 2 3 -52 3 4 3 7 
17 49 53 46 61 32 4 8 7 8 53 6 5 4 7 
18 50 51 55 74 33 9 7 12 11 54 2 3 4 7 
19 58 66 69 72 34 5 12 14 13 55 7 7 10 9 
20 56 70 68 65 35 13 14 12 19 56 5 13 8 8 
21 68 57 59 38 36 18 15 13 18 57 6 7 9 11 
22 51 29 46 18 37 11 13 15 18 58 7 7 9 10 
23 38 32 28 6 38 16 15 19 18 59 5 7 9 9 
24 22 9 20 8 39 16 20 20 29 60 7 6 8 4 
25 11 12 13 5 40 18 10 20 23 61 6 8 2 4 
26 7 4 8 0 41 14 11 15 6 62 5 7 5 3 
27 2 3 0 1 42 19 21 12 14 63 4 1 6 4 
28 6 1 3 0 43 16 12 8 5 64 9 4 4 4 

44 6 11 5 5 65 6 2 3 2 
45 8 12 7 0 66 6 3 5 0 
46 6 4 6 4 67 1 3 0 0 
47 8 3 3 1 68 0 2 0 0 
48 3 2 1 1 69 3 1 0 2 
49 2 0 0 0 70 2 0 0 2 
50 1 0 0 2 71 0 0 0 1 
51 0 1 1 0 72 2 0 1 0 
52 0 0 0 0 73 0 0 0 0 
53 0 0 0 0 74 0 1 1 0 
54 1 0 0 0 75 0 0 0 0 

76 0 0 0 0 
77 1 0 0 0 
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TABLE III (Continued) 

100 j:Ioo(nj60 = u) 100 9:31o(n2oO = u) 
nl160 _n2o 

k = 1 k = 2 k = 3 k 4 k = 1 k = 2 k = 3 k = 4 

60 0 0 1 0 81 0 0 1 0 
61 0 0 1 0 82 0 0 1 0 
62 0 0 0 0 83 1 1 1 1 
63 1 0 0 0 84 2 1 0 1 
64 0 0 0 0 85 1 1 1 2 
65 0 0 0 0 86 1 2 2 1 
66 2 2 0 2 87 0 3 3 0 
67 0 4 2 0 88 1 1 1 0 
68 2 1 1 1 89 3 4 2 4 
69 2 1 1 2 90 4 2 3 3 
70 0 3 5 3 91 2 4 1 5 
71 1 4 3 1 92 1 2 1 4 
72 5 4 5 3 93 5 2 4 6 
73 6 1 3 8 94 8 5 9 3 
74 5 3 6 4 95 4 2 4 8 
75 3 7 8 8 96 1 4 3 5 
76 7 4 6 14 97 5 7 10 12 
77 6 6 6 9 98 5 8 8 8 
78 4 4 9 7 99 6 5 5 4 
79 6 7 5 8 100 2 5 8 2 
80 9 12 8 6 101 5 9 3 4 
81 4 7 1 3 102 7 4 5 5 
82 6 5 5 6 103 3 7 7 6 
83 1 4 6 4 104 5 4 2 7 
84 8 3 5 3 105 5 2 2 3 
85 4 4 4 2 106 1 3 3 0 
86 3 2 0 2 107 4 3 1 0 
87 2 3 2 0 108 3 1 5 1 
88 3 4 2 1 109 2 3 1 4 
89 1 1 2 0 110 2 1 1 0 

190 3 0 1 1 111 1 0 1 0 
91 0 2 1 2 112 3 2 1 0 
92 1 1 0 0 113 1 0 0 1 
93 0 0 0 0 114 0 1 0 0 
94 2 0 1 0 115 2 1 0 0 
95 1 1 0 0 116 0 0 0 0 
96 1 0 0 0 117 2 0 0 0 
97 0 0 0 118 1 0 0 0 
1 98 1 0 0 0 119 1 0 0 0 

The theoretical probability distribution of sample-correlations is given by the 
relation 

(12.3) Prob [PN(k, c) = U] 2N~k (N k, u=0,,* Nk 

where 
N-k NU 

2 2 

For large values of (N - k), this binomial distribution can be approximated by 
the Gaussian distribution 

Prob [pv(k, w) = U] ;- 2 

(12.4) V2X-7r( k) 
e (N-k-- 2u)] *exp - U_ I, u=O1,***.. N -k. 
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2.8k: 2 

N : 40 N :40 
20.4 -0.4 -0.2 0 0.2 .4 -0.6 -0.4 -0.2 q =.500 -0. 0.6 

2.0 

1.6 L 

J 
4 

1.2 - 

0.8 - - - 

0.4 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 

FIG. 5.-Experimental frequency distributions of sample-correlations, 5Yq[pN(k, c) = U] 
(full line)are compared with the theoretical binomial frequency distribution (dashed lines). 

In particular, the probability of pN(k, co) being equal to the sub-correlation 

RN(k) = pN(kco) = 0, k ? 1 

(which, in the present case, is also equal to the correlation R(k)) is given by 

(12.5) Prob [PN (k, co) = 0] = 2ik( ) ))' k > 1 

with the approximated formula 

(12.6) Prob [pN(k, co) = 0] 2 k _ 1. 
N/2ir(N - k)~ 

In Figure 5 we are comparing some of the experimental frequency distributions 
with these theoretical results. 

Faculty des Sciences 
University of Lille 
Lille, France 

Applied Mathematics Laboratory 
David Taylor Model Basin 
Washington 7, D. C. 

1. R. B. BLACKMAN & J. W. TUKEY, The Measurement of Power Spectra, Dover Publica- 
tions, Inc., New York, 1958. 

2. S. BOCHNER, Vorlesungen iber Fouriersche Integrale, Akad-Verlag, Leipzig, 1932. 
(Reprint: Chelsea, New York, 1948). 

3. M. M. CRUM, "On positive-definitive functions," Proc. London Math. Soc., v. 6, 1956, 
p. 548-560. 



CORRELATIONS AND SPECTRA FOR NON-STATIONARY RANDOM FUNCTIONS 21 

4. J. L. DOOB, Stochastic Processes, John Wiley and Sons, New York, 1953. 
5. F. N. FRENKIEL & J. KAMPP, DE FPGRIET, Proceedings of the International Congress of 

Mathematicians, Nordhoff, Groningen, v. 2, 1954, p. 291. 
6. U. GRENANDER & M. ROSENBLATT, Statistical Analysis of Stationary Time Series, John 

Wiley and Sons, New York, 1957. 
7. P. R. HALMOS, Measure Theory, D. Van Nostrand Company, New York, 1950. 
8. E. W. HOBSON, The Theory of Functions of a Real Variable, Dover Publications, New 

York, 1957, v. 1 and 2. 
9. J. KAMPP, DE FPRIET & F. N. FRENKIEL, "Estimation de la correlation d'une function 

al6atoire non stationnaire," Comptes Rendus, Acad. Sciences, Paris, v. 249, 1959, p. 348-351. 
10. J. KAMPP, DE FPRIET, "Introduction to the statistical theory of turbulence," J. 

Soc. Indust. Appl. Math., v. 2, 1954, p. 1-9, 143-174, 244-271; v. 3, 1955, p. 90-117. 
11. M. G. KENDALL & B. B. SMITH, Random Sampling Numbers, Cambridge University 

Press, 1939. 
12. PAUL Ltvy, Calcul des Probabilites, Gauthier-Villars, Paris, 1925. 
13. E. PARZEN, "On consistent estimates of the spectrum of a stationary time series," 

Ann. Math. Statist., v. 28, 1957, p. 329-348. 
14. E. PARZEN, "On choosing an estimate of the spectral density function of a stationary 

time series," Ann. Math. Statist., v. 28, 1957, p. 921-932. 
15. N. WIENER, The Fourier Integral and Certain of its Applications, Cambridge Uni- 

versity Press, 1933. 


	Cit r14_c15: 
	Cit r13_c14: 


